キーワード検索

キーワード 詳細検索

プロフィール

岸本 崇 キシモト タカシ

所属部署名 理工学研究科 数理電子情報部門 電話番号
職名 助教 ■FAX番号
住所 埼玉県さいたま市桜区下大久保255 ■メールアドレス tkishimo@rimath.saitama-u.ac.jp
■ホームページURL

プロフィール

兼担研究科・学部

理学部 数学科数理代数

研究分野

代数幾何学
キーワード:代数幾何学 , 多項式環 , ログ極小モデルプログラム , サルキソフプログラム

現在の研究課題

ログ極小モデルプログラムの視点からの3次元アフィン代数多様体の構造解析
現在の研究テーマは,双有理幾何学的手法(極小モデル理論・森理論)を用いた高次元アフィン代数多様体の構造研究である。特に関心があるのは,3次元の場合であるが,多くのアフィン代数幾何学・多項式環に関する問題は,3次元以上では殆ど解明されていないと言ってよい。一方,3次元の射影多様体に対しては,極小モデル理論という代数多様体の大まかな特徴(双有理的な特徴)を把握する為には大変に強力な理論が存在する。大雑把に言うと,解析したい3次元アフィン代数多様体$X$を3次元射影多様体$V$に境界因子$D$が正規交叉するようにコンパクト化をしておき,dlt対$(V,D)$からスタートするログ極小モデルプログラム(LMMP)を実行する。ログ極小モデル理論の枠組みにより,有限回の双有理写像(因子収縮射,ログ・フリップ)を経由した後に,対(V,D)$は新しいdlt対$(V',D')$に双有理的に変化し,$X$の対数的小平次元に応じて$(V',D')$はログ森ファイバー空間又はログ極小モデルになる。この$(V',D')$の特殊な構造を利用し,補集合$X'=V'-D'$を解析することは可能であるので,最終的に問題となってくるのは$X$と$X'$の変化を明示的に記述することである。ここの問題が解決できれば,1970年代後半からの2次元アフィン代数多様体(アフィン曲面)の理論の著しい発展と同様な発展が3次元アフィン代数多様体にも期待できる。現地点では,我々のこの試みは完全な形では実現されてはいないが,コンパクト化に関するある種の幾何学的な条件を課した上では試みは成功している(Math. Zeit., 247 (2004), 149-181, International. J. Math., 17 (2006), 1-17)。現在でも仮定する条件は段階的に少しずつ改良できてきている。また,3次元アフィン代数幾何学で中心的な多様体となるのは,3次元アフィン空間$C3$であるが,それを上で述べた視点で考察する為には$C3$の森ファイバー空間へのコンパクト化を分類することが望ましい。第二ベッチ数が1の非特異なFano 3-foldの場合には,様々な研究者の貢献の後に1993年に古島幹雄氏によりコンパクト化は分類された。我々は第二ベッチ数が2の非特異なFano 3-foldの場合に,森重文氏・向井茂氏による非特異Fano 3-foldの分類を適用することにより,$C^3$のみではなくて位相的に可縮な3次元アフィン代数多様体のコンパクト化を分類することに成功した(Math. Zeit., 251 (2005), 783-820)。

所属学会

所属学会
日本数学会

学歴

出身大学院・研究科等
2002 , 大阪大学 , 博士 , 理学研究科 , 数学 , 修了
出身学校・専攻等(大学院を除く)
1997 , 東京工業大学 , 理学部 , 数学科 , 卒業
取得学位
博士(理学) , 大阪大学 , A new proof of a theorem of Ramanujam-Morrow

研究職歴等

研究職歴
2004 , 埼玉大学理学部・助手
2003 - 2003 , 京都大学数理解析研究所・21世紀京都数学フェロー
研究職歴以外の職歴
2006 - 2008 , 日本学術振興会海外特別研究員
2002 - 2003 , マックスプランク数学研究所・研究員
2001 - 2003 , 日本学術振興会特別研究員

研究活動業績

研究業績(著書・発表論文等)

論文
Group actions on affine cones
,CRM Proceedings Russellfest (to appear) 2011(
Takashi Kishimoto他2名

Homogeneous locally nilpotent derivations of C[x,y,z] and pencils of rationa plane curves
,Higher Dimensional Algebraic Geometry, RIMS Kokyuroku Bessatsu,24:81-101 2011
Takashi Kishimoto

A new proof of the non-tameness of the Nagata automorphism from the point of view of the Sarkisov program
,Compositio Mathematica,144(4):963-977 200807
Takashi Kishimoto

Affine lines on Q-homology planes with logarithmic kodaira dimension -infinity
,Transformation Groups,13(1):211-213 200803
Takashi Kishimoto, Hideo Kojima

ログ極小モデル理論の観点からの3次元アフィン代数多様体の双正則的構造解析
埼玉大学総合研究機構,総合研究機構研究プロジェクト研究成果報告書,5 (平成18年度):486-487 2007
岸本崇
Analysis of Affine Algebraic Threefolds from a point of view of Log Minimal Model Program

Affine lines on Q-homology planes with logarithmic kodaira dimension -infinity
,Transformation Groups ,11(4):659-672 2006
Kishimoto, Takashi, Kojima, Hideo

Affine threefolds whose log canonical bundles are not numerically effective
,Journal of Pure and Applied Algebra,208(1):189-204 2006
Kishimoto, Takashi

On the logarithmic Kodaira dimension of affine threefolds
,International Journal of Mathematics,17(1):1-17 2006
Kishimoto, Takashi

The combination of 3-dimensional Affine Algebraic Geometry and Minimal Model Program
埼玉大学総合研究機構,総合研究機構研究プロジェクト研究成果報告書,4 (平成17年度) 2006
岸本崇

Analysis of the structure of affine algebraic threefolds from a point of view of MinimalModel Theory (Mori Theory)
埼玉大学総合研究機構,総合研究機構研究プロジェクト研究成果報告書,3 (平成16年度) 2005
岸本崇

Compactifications of contractible affine 3-folds into smooth Fano 3-folds with B2=2
,Mathematische Zeitschrift,251(4):783-820 2005
Kishimoto, Takashi

Singularities on normal affine 3-folds containing A1-cylinderlike open subsets
,Contemporary Mathematics,369:139-163 2005
Kishimoto, Takashi

The explicit factorization of the Cremona transformation which is an extension of the Nagata automorphism into elementary links
,Mathematische Nachrichten,278(7-8):833-843 2005
Kishimoto, Takashi

On the compactifications of contractible affine threefolds and the Zariski Cancellation Problem
,Mathematische Zeitschrift,247:149-181 2004
Kishimoto, Takashi

A new proof of a theorem of Ramanujam-Morrow
,Journal of Mathematics of Kyoto University,42:117-139 2002
Kishimoto, Takashi

Abhyankar-Sathaye Embedding Problem in dimension three
,Journal of Mathematics of Kyoto University,42:641-669 2002
Kishimoto, Takashi

Projective plane curves whose complements have logarithmic Kodaira dimension one
,Japanese Journal of Mathematics,27:275-310 2001
Kishimoto, Takashi

学会発表
Ga and Ga2-actions the complements of hypersurfaces in P3
第7回アフィン代数幾何学研究集会 201103
Takashi Kishimoto

Affine uniruledness and Ga-actions on affine algebraic varieties
射影多様体の幾何とその周辺2010,射影多様体の幾何とその周辺2010:53-62 201011
Takashi Kishimoto

Affine uniruledness and Ga-actions on affine algebraic varieties
第6回アフィン代数幾何学研究集会 201009
Takashi Kishimoto

研究費

受託研究
, サルキソフ・プログラムの視点からの3次元アフィン代数多様体の構造解析 ,
科学研究費補助金(研究代表者)
, 3次元アフィン代数多様体の構造研究
, ログ極小モデル理論の視点からのアフィン代数多様体の構造解析へのアプローチ
その他公的資金
, 極小モデル理論の視点からの三次元アフィン代数多様体の構造解析
その他
, 極小モデル理論(森理論)的手法による3次元アフィン代数多様体の構造研究
, 極小モデル理論とアフィン代数幾何学の融合
, 対数的極小モデル理論およびサルキソフ・プログラムのアフィン代数幾何学への応用